Подробнее читайте на сайте «Теории и Практики»
Согласно опросам детей в школах и людей, которые приходят на научно-популярные мероприятия, наиболее частой темой, которая их интересует, являются черные дыры. Неудивительно, что фотография черной дыры всполошила мировую общественность весной прошлого года — событие сразу же записали в историческое и важное в мировом масштабе. Публикуем конспект лекции астрофизика Юрия Ковалева, прошедшей в рамках фестиваля Pint of Science, в которой он рассказывает, чем на самом деле является упомянутая фотография и что она значит для науки.
#note1 {display: none;} #note2 {display: none;} #note3 {display: none;} .block { background: #f5f5f5; border: 0px ; text-align: left; width: 300px; z-index: 1; padding: 10px; font-family: sans-serif; font-size: small; } .spoiler > .block {display: none; position: absolute;} .spoiler > input:checked + .block {display: block;} label {font-size: small; vertical-align: super;} label:hover {cursor: pointer; text-shadow: 1px 1px 2px #f5f5f5, 0 0 1em #f5f5f5; } .marker { background: #FFE3E0; background: linear-gradient(180deg,rgba(255,255,255,0) 45%, #FFE3E0 55%); }
Юрий Ковалев
Руководитель лаборатории в Физическом институте им. П.Н. Лебедева и Московском физико-техническом институте, лауреат премий имени Ф.А. Бредихина и Вильгельма Бесселя, член-корреспондент РАН

Самостоятельно сделать снимок черной дыры может каждый: для этого нужно купить стаут,❓Темный элевый сорт пива, приготовленный с использованием жженого солода. желательно, чтобы пена была не очень объемная и долго держалась, налить его в бокал, засунуть палец по центру бокала, быстро вынуть, сфотографировать. В результате у вас должна получиться прекрасная фотография черной дыры (только палец вынимайте быстрее) — ученым же для этого потребовалась пара десятков лет.
Что такое черная дыра
Начнем с теории. Мы знаем, что объекту, например человеку или ракете, для того чтобы покинуть планету Земля и улететь, скажем, на Марс, нужно стартовать с поверхности со второй космической скоростью, которую очень легко посчитать по формуле V2 = 2GM/R. То есть все, что нам нужно знать для расчетов, это массу (M) и радиус объекта (R), не забудем уточнить в справочнике и величину гравитационной постоянной (G). Для Земли вторая космическая скорость равна 11,2 км/с.
Черная дыра — это объект, вторая космическая скорость которого равна или больше скорости света, это настолько массивный и компактный объект, что с него ничто не может улететь, включая фотоны, частицы света
Ученые уже сто лет пытаются проверить общую теорию относительности Эйнштейна и, в частности, постулаты, лежащие в ее основе. Один из них, который знают абсолютно все, это постулат о скорости света, согласно которому скорость света в вакууме — это максимальная скорость, которую можно достичь в нашей Вселенной. Так что, если у вас есть объект, достаточно массивный и достаточно компактный, он будет черной дырой. Почему черной? Потому что, напоминаю, с него ничего не может улететь, в том числе свет, который в норме показал бы черную дыру во всей красе.

Чтобы узнать размер черной дыры, можно использовать формулу второй космической скорости, заменив V2 на c2 (скорость света в квадрате). Размер черной дыры Rg определяет горизонт событий. Он находится на расстоянии от центра, где вторая космическая скорость равна скорости света, — это расстояние называется гравитационным радиусом, или радиусом Шварцшильда, и вычисляется по формуле Rg=2GM/с2.
Чтобы вы представили себе, насколько это большие объекты, давайте сделаем черную дыру из чего-то знакомого, например из Земли. Если мы сожмем Землю, гравитационный радиус для черной дыры, которую мы из нее сделали, будет равен 9 миллиметрам. Если мы сожмем Солнце, сделав из него черную дыру, черная дыра с массой как наше Солнце будет иметь диаметр 6 километров. Под этими тремя километрами гравитационного радиуса ничего нельзя будет увидеть.

Расположение черных дыр
Ученые считают, что массивные черные дыры находятся в центрах других далеких галактик, а также в центре нашей Галактики. Вокруг центра активной галактики располагается диск из пыли и газа, и из внутренних областей этого диска вещество «падает» на черную дыру, в центр. При этом около 10% этого вещества выбрасывается наружу в виде узких горячих джетов. Вместе с веществом на центральную сверхмассивную черную дыру также «падает» и магнитное поле, которое накапливается в «пружину». Электромагнитная пружина в состоянии вытолкнуть наружу материю и даже ускорить ее до скоростей, очень близких к скорости света. Из этих разогнанных струй астрономы могут наблюдать излучение электронов.
Как сделали фотографию черной дыры
Из школьного курса физической оптики мы знаем, что мельчайшие детали, которые любое одиночное оптическое или радиозеркало может различить на небе (самый мелкий масштаб), определяют следующей формулой — λ / D (длина волны наблюдения, разделенная на диаметр зеркала). Но поскольку в радиоастрономии работают с длинными волнами, что бы радиоастрономы ни наблюдали на небе с телескопом, для них все выглядит как точка.
Тем не менее более полувека назад советские радиоастрономы Леонид Матвеенко, Николай Кардашев и Геннадий Шоломицкий презентовали идею, которая называется радиоинтерферометр со сверхдлинной базой. Они предложили собрать вместе много радиотелескопов, расставить их в разных уголках планеты Земля — или даже запустить в космос — и использовать как единую систему. При этом уже упомянутая ранее формула будет выглядеть не как λ / D, а как длина волны, разделенная на расстояние между телескопами: λ / B! Фактически при использовании интерферометра у такой системы образуется высочайшее угловое разрешение, самое высокое в астрономии.

Оптический космический телескоп «Хаббл» имеет угловое разрешение 50 миллисекунд дуги, а изображение тени черной дыры имеет размер в тысячу раз меньше, чем возможности «Хаббла»! Что-то подобное можно сделать и с инфракрасными телескопами, правда, есть сложность в синхронизации, поэтому в инфракрасном диапазоне эту технологию пока не удается довести до желаемого уровня чувствительности.
Тем не менее все мы пользуемся услугами интерферометров ежедневно. В частности, с помощью радиоинтерферометров можно использовать галактики, которые находятся очень далеко, как реперные точки, своего рода гвозди, прибитые к небу, относительно которых можно измерять координаты на Земле. Например, определять параметры вращения Земли и то, как в результате нутации двигается по небу ось вращения планеты. Эта информация необходима для работы систем глобального позиционирования ГЛОНАСС, GPS, и измерения проводятся практически каждый день.
Интерферометру можно придать больше разрешающей силы, уменьшив длину волны λ. Наши коллеги, для того чтобы получить изображение тени черной дыры, уменьшили длину волны наблюдений до 1,3 мм. На коротких длинах волн плазма, которая окружает черную дыру в центрах галактик, становится более прозрачной, и благодаря этому ученые могут разглядеть, что происходит в центре. Чтобы получить такую возможность, ученые работали долгие годы, и в результате угловое разрешение системы оказалось достаточным, чтобы увидеть на изображении тень черной дыры.